54 research outputs found

    Manipulating cellular microRNAs and analyzing high-dimensional gene expression data using machine learning workflows.

    Full text link
    MicroRNAs (miRNAs) are elements of the gene regulatory network and manipulating their abundance is essential toward elucidating their role in patho-physiological conditions. We present a detailed workflow that identifies important miRNAs using a machine learning algorithm. We then provide optimized techniques to validate the identified miRNAs through over-expression/loss-of-function studies. Overall, these protocols apply to any field in biology where high-dimensional data are produced. For complete details on the use and execution of this protocol, please refer to Wong et al. (2021a)

    Further Support to the Uncoupling-to-Survive Theory: The Genetic Variation of Human UCP Genes Is Associated with Longevity

    Get PDF
    In humans Uncoupling Proteins (UCPs) are a group of five mitochondrial inner membrane transporters with variable tissue expression, which seem to function as regulators of energy homeostasis and antioxidants. In particular, these proteins uncouple respiration from ATP production, allowing stored energy to be released as heat. Data from experimental models have previously suggested that UCPs may play an important role on aging rate and lifespan. We analyzed the genetic variability of human UCPs in cohorts of subjects ranging between 64 and 105 years of age (for a total of 598 subjects), to determine whether specific UCP variability affects human longevity. Indeed, we found that the genetic variability of UCP2, UCP3 and UCP4 do affect the individual's chances of surviving up to a very old age. This confirms the importance of energy storage, energy use and modulation of ROS production in the aging process. In addition, given the different localization of these UCPs (UCP2 is expressed in various tissues including brain, hearth and adipose tissue, while UCP3 is expressed in muscles and Brown Adipose Tissue and UCP4 is expressed in neuronal cells), our results may suggest that the uncoupling process plays an important role in modulating aging especially in muscular and nervous tissues, which are indeed very responsive to metabolic alterations and are very important in estimating health status and survival in the elderly

    The uncoupling protein 1 gene, UCP1, is expressed in mammalian islet cells and associated with acute insulin response to glucose in African American families from the IRAS Family Study

    Get PDF
    BACKGROUND: Variants of uncoupling protein genes UCP1 and UCP2 have been associated with a range of traits. We wished to evaluate contributions of known UCP1 and UCP2 variants to metabolic traits in the Insulin Resistance and Atherosclerosis (IRAS) Family Study. METHODS: We genotyped five promoter or coding single nucleotide polymorphisms (SNPs) in 239 African American (AA) participants and 583 Hispanic participants from San Antonio (SA) and San Luis Valley. Generalized estimating equations using a sandwich estimator of the variance and exchangeable correlation to account for familial correlation were computed for the test of genotypic association, and dominant, additive and recessive models. Tests were adjusted for age, gender and BMI (glucose homeostasis and lipid traits), or age and gender (obesity traits), and empirical P-values estimated using a gene dropping approach. RESULTS: UCP1 A-3826G was associated with AIR(g )in AA (P = 0.006) and approached significance in Hispanic families (P = 0.054); and with HDL-C levels in SA families (P = 0.0004). Although UCP1 expression is reported to be restricted to adipose tissue, RT-PCR indicated that UCP1 is expressed in human pancreas and MIN-6 cells, and immunohistochemistry demonstrated co-localization of UCP1 protein with insulin in human islets. UCP2 A55V was associated with waist circumference (P = 0.045) in AA, and BMI in SA (P = 0.018); and UCP2 G-866A with waist-to-hip ratio in AA (P = 0.016). CONCLUSION: This study suggests a functional variant of UCP1 contributes to the variance of AIR(g )in an AA population; the plausibility of this unexpected association is supported by the novel finding that UCP1 is expressed in islets

    Hyperandrogenism and Metabolic Syndrome Are Associated With Changes in Serum-Derived microRNAs in Women With Polycystic Ovary Syndrome.

    Get PDF
    Polycystic ovary syndrome (PCOS) remains one of the most common endocrine disorder in premenopausal women with an unfavorable metabolic risk profile. Here, we investigate whether biochemical hyperandrogenism, represented by elevated serum free testosterone, resulted in an aberrant circulating microRNA (miRNAs) expression profile and whether miRNAs can identify those PCOS women with metabolic syndrome (MetS). Accordingly, we measured serum levels of miRNAs as well as biochemical markers related to MetS in a case-control study of 42 PCOS patients and 20 Controls. Patients were diagnosed based on the Rotterdam consensus criteria and stratified based on serum free testosterone levels (≥0.034 nmol/l) into either a normoandrogenic (n = 23) or hyperandrogenic (n = 19) PCOS group. Overall, hyperandrogenic PCOS women were more insulin resistant compared to normoandrogenic PCOS women and had a higher prevalence of MetS. A total of 750 different miRNAs were analyzed using TaqMan Low-Density Arrays. Altered levels of seven miRNAs (miR-485-3p, -1290, -21-3p, -139-3p, -361-5p, -572, and -143-3p) were observed in PCOS patients when compared with healthy Controls. Stratification of PCOS women revealed that 20 miRNAs were differentially expressed between the three groups. Elevated serum free testosterone levels, adjusted for age and BMI, were significantly associated with five miRNAs (miR-1290, -20a-5p, -139-3p, -433-3p, and -361-5p). Using binary logistic regression and receiver operating characteristic curves (ROC), a combination panel of three miRNAs (miR-361-5p, -1225-3p, and -34-3p) could correctly identify all of the MetS cases within the PCOS group. This study is the first to report comprehensive miRNA profiling in different subgroups of PCOS women with respect to MetS and suggests that circulating miRNAs might be useful as diagnostic biomarkers of MetS for a different subset of PCOS
    • …
    corecore